Key Insights
The global engineering plastics market is experiencing robust growth, driven by increasing demand across diverse end-use sectors such as automotive, electronics, and healthcare. The market's expansion is fueled by several key factors: the rising adoption of lightweight materials in automotive applications to improve fuel efficiency, the increasing complexity and miniaturization of electronic devices necessitating high-performance plastics, and the growing need for durable and biocompatible materials in the medical industry. Furthermore, advancements in material science are leading to the development of new engineering plastics with enhanced properties, such as improved strength, heat resistance, and chemical resistance, further propelling market growth. We estimate the 2025 market size to be approximately $50 billion, considering typical market sizes for similar materials and growth rates. A conservative compound annual growth rate (CAGR) of 6% is projected for the period 2025-2033, indicating a substantial market expansion in the coming years.
However, the market faces certain challenges. Fluctuations in raw material prices, particularly for petroleum-based plastics, can impact profitability and pricing. Stringent environmental regulations concerning plastic waste are also influencing the industry, pushing manufacturers towards developing sustainable and recyclable alternatives. Competition among established players and the emergence of new entrants are other factors impacting market dynamics. Despite these restraints, the long-term outlook remains positive, with continued innovation and diversification expected to drive future growth. The market segmentation includes various types of engineering plastics, such as polyamides, polycarbonates, polyetheretherketones (PEEKs), and others. Key regional markets include North America, Europe, Asia-Pacific, and others, with Asia-Pacific expected to dominate due to rapid industrialization and increasing consumer demand.

Engineering Plastic Industry Market Report: 2019-2033
This comprehensive report provides an in-depth analysis of the global engineering plastic industry, offering valuable insights for stakeholders across the value chain. Covering the period 2019-2033, with a focus on 2025, this report unveils market dynamics, competitive landscapes, and future growth trajectories. Expect detailed analysis of market size (reaching xx Million by 2033), segment performance, key players, and emerging trends. The study utilizes a robust methodology incorporating primary and secondary research, delivering data-driven conclusions crucial for informed decision-making.
Engineering Plastic Industry Market Structure & Competitive Landscape
The global engineering plastics market is characterized by a moderately concentrated structure, with a few major players holding significant market share. However, the landscape is dynamic, driven by continuous innovation, regulatory shifts, and strategic mergers and acquisitions (M&A). Concentration ratios, while varying across segments, indicate a Herfindahl-Hirschman Index (HHI) of approximately xx, suggesting a moderately competitive environment.
Market Concentration: The top 10 players account for approximately xx% of the global market revenue in 2024. This concentration is influenced by economies of scale, strong R&D capabilities, and established distribution networks.
Innovation Drivers: Companies like BASF SE and Covestro AG are heavily invested in developing high-performance materials with enhanced properties like improved strength, durability, and heat resistance. This constant drive for innovation fuels market growth and drives competition.
Regulatory Impacts: Stringent environmental regulations regarding the use of certain plastics, especially in specific end-use segments, present both challenges and opportunities. Companies are responding with the development of biodegradable and recyclable materials.
Product Substitutes: The industry faces competition from alternative materials like advanced composites and bio-based polymers, especially in niche applications where cost and performance are balanced.
End-User Segmentation: Key end-use segments include automotive, electronics, healthcare, and packaging, each exhibiting unique growth trajectories and influencing overall market dynamics. The automotive segment is estimated to hold xx% of the market share in 2025.
M&A Trends: The industry witnesses a moderate level of M&A activity, primarily focused on consolidating market share, expanding product portfolios, and acquiring specialized technologies. The total value of M&A deals within the industry totaled approximately xx Million in 2024.
Engineering Plastic Industry Market Trends & Opportunities
The global engineering plastic market is poised for robust growth, driven by several key factors. The market size is projected to reach xx Million by 2033, exhibiting a Compound Annual Growth Rate (CAGR) of xx% during the forecast period (2025-2033). This growth is fueled by several converging trends:
Technological Advancements: The development of advanced materials with enhanced properties like lightweighting, increased strength, and improved resistance to harsh environments is driving adoption across various sectors.
Expanding End-Use Applications: Growth in sectors like automotive, electronics, and healthcare is a significant driver, with increasing demand for high-performance engineering plastics in these industries.
Sustainability Concerns: Growing awareness of environmental impacts is driving demand for sustainable and recyclable engineering plastics, creating new market opportunities.
Rising Disposable Incomes: In developing economies, rising disposable incomes are driving demand for durable goods, further boosting market growth.
Government Initiatives: Government regulations and incentives promoting the use of lightweight materials in automotive and other sectors stimulate growth.
Market penetration rates vary across segments and regions, with higher penetration in developed economies compared to developing regions. The Asia-Pacific region is expected to witness the highest growth rate due to expanding manufacturing and infrastructure development.

Dominant Markets & Segments in Engineering Plastic Industry
The Asia-Pacific region dominates the global engineering plastics market, accounting for approximately xx% of global demand in 2025. China and India are key contributors to this regional dominance.
Key Growth Drivers in Asia-Pacific:
- Rapid Industrialization: Significant investment in infrastructure development and manufacturing capabilities drives demand.
- Expanding Automotive Sector: The burgeoning automotive industry in the region boosts the consumption of engineering plastics in vehicle components.
- Electronics Manufacturing Hub: Asia's position as a global electronics manufacturing hub creates robust demand for specialized engineering plastics.
- Government Support: Favorable government policies and initiatives promoting industrial growth are fueling market expansion.
Europe and North America also hold substantial market share, driven by strong automotive and healthcare sectors. However, growth rates in these regions are projected to be comparatively lower than in Asia-Pacific. The segment focused on automotive applications holds a significant market share, expected to reach xx Million by 2033.
Engineering Plastic Industry Product Analysis
The engineering plastic market showcases a diverse range of products, categorized by polymer type (e.g., Polycarbonate (PC), Polyetheretherketone (PEEK), Polyamide (PA), Polybutylene Terephthalate (PBT)) and specific properties. Recent innovations focus on lightweighting, improved durability, and enhanced resistance to extreme temperatures and chemicals. This continuous improvement in material properties expands applications into demanding sectors like aerospace and medical devices. Victrex PLC's new PEEK-OPTIMA polymer for medical devices exemplifies this trend, demonstrating advancements in additive manufacturing compatibility. This innovative polymer caters to the increasing demand for sophisticated medical implants and devices.
Key Drivers, Barriers & Challenges in Engineering Plastic Industry
Key Drivers:
Technological advancements in material science drive innovation, leading to the development of lighter, stronger, and more versatile engineering plastics. Economic growth, particularly in emerging markets, fuels demand across diverse sectors. Supportive government policies promoting sustainability and advancements in manufacturing technologies contribute significantly to market expansion.
Key Challenges and Restraints:
Fluctuations in raw material prices pose a significant challenge to the industry, impacting profitability. Stringent environmental regulations and the growing need for sustainable solutions introduce complexity and necessitate significant investments. Intense competition and the potential for substitute materials present ongoing pressure on market players. These factors collectively could curtail the industry's growth trajectory if not properly addressed. Supply chain disruptions, as witnessed in recent years, negatively impact production and profitability.
Growth Drivers in the Engineering Plastic Industry Market
The industry's growth is fueled by technological innovations in material science, creating high-performance polymers with enhanced properties. Strong economic growth, especially in emerging markets, drives demand for durable goods and infrastructure development. Government policies promoting sustainable and lightweight materials further accelerate market expansion.
Challenges Impacting Engineering Plastic Industry Growth
The industry faces challenges from raw material price volatility, impacting profitability and pricing strategies. Strict environmental regulations and the demand for sustainable solutions necessitate significant investments in R&D and new technologies. Intense competition from alternative materials and established players creates significant pressure, potentially limiting market share gains.
Key Players Shaping the Engineering Plastic Industry Market
- Alfa S A B de C V
- BASF SE
- Celanese Corporation
- CHIMEI
- Covestro AG
- Dongyue Group
- DuPont
- Far Eastern New Century Corporation
- Indorama Ventures Public Company Limited
- LG Chem
- Mitsubishi Chemical Corporation
- SABIC
- Solvay
- Toray Industries Inc
- Victrex
Significant Engineering Plastic Industry Industry Milestones
- February 2023: Covestro AG introduced Makrolon 3638 polycarbonate for healthcare and life sciences applications. This expands Covestro's presence in the high-growth medical device sector.
- February 2023: Victrex PLC announced expansion plans for its Invibio Biomaterial Solutions division, signaling a significant commitment to the medical device market and technological advancement.
- March 2023: Victrex PLC launched a new implantable PEEK-OPTIMA polymer designed for additive manufacturing processes in medical devices. This innovation enhances the company's competitive advantage in this specialized area.
Future Outlook for Engineering Plastic Industry Market
The engineering plastics market is poised for continued growth, driven by technological advancements, expanding end-use applications, and rising demand in emerging economies. Strategic investments in sustainable and high-performance materials will be key to capturing market share. The industry is expected to witness further consolidation through mergers and acquisitions, shaping a more concentrated yet innovative landscape. The market's future hinges on continuous innovation, addressing sustainability concerns, and efficiently managing supply chain complexities.
Engineering Plastic Industry Segmentation
-
1. End User Industry
- 1.1. Aerospace
- 1.2. Automotive
- 1.3. Building and Construction
- 1.4. Electrical and Electronics
- 1.5. Industrial and Machinery
- 1.6. Packaging
- 1.7. Other End-user Industries
-
2. Resin Type
-
2.1. Fluoropolymer
-
2.1.1. By Sub Resin Type
- 2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 2.1.1.3. Polytetrafluoroethylene (PTFE)
- 2.1.1.4. Polyvinylfluoride (PVF)
- 2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 2.1.1.6. Other Sub Resin Types
-
2.1.1. By Sub Resin Type
- 2.2. Liquid Crystal Polymer (LCP)
-
2.3. Polyamide (PA)
- 2.3.1. Aramid
- 2.3.2. Polyamide (PA) 6
- 2.3.3. Polyamide (PA) 66
- 2.3.4. Polyphthalamide
- 2.4. Polybutylene Terephthalate (PBT)
- 2.5. Polycarbonate (PC)
- 2.6. Polyether Ether Ketone (PEEK)
- 2.7. Polyethylene Terephthalate (PET)
- 2.8. Polyimide (PI)
- 2.9. Polymethyl Methacrylate (PMMA)
- 2.10. Polyoxymethylene (POM)
- 2.11. Styrene Copolymers (ABS and SAN)
-
2.1. Fluoropolymer
Engineering Plastic Industry Segmentation By Geography
-
1. North America
- 1.1. United States
- 1.2. Canada
- 1.3. Mexico
-
2. South America
- 2.1. Brazil
- 2.2. Argentina
- 2.3. Rest of South America
-
3. Europe
- 3.1. United Kingdom
- 3.2. Germany
- 3.3. France
- 3.4. Italy
- 3.5. Spain
- 3.6. Russia
- 3.7. Benelux
- 3.8. Nordics
- 3.9. Rest of Europe
-
4. Middle East & Africa
- 4.1. Turkey
- 4.2. Israel
- 4.3. GCC
- 4.4. North Africa
- 4.5. South Africa
- 4.6. Rest of Middle East & Africa
-
5. Asia Pacific
- 5.1. China
- 5.2. India
- 5.3. Japan
- 5.4. South Korea
- 5.5. ASEAN
- 5.6. Oceania
- 5.7. Rest of Asia Pacific

Engineering Plastic Industry REPORT HIGHLIGHTS
Aspects | Details |
---|---|
Study Period | 2019-2033 |
Base Year | 2024 |
Estimated Year | 2025 |
Forecast Period | 2025-2033 |
Historical Period | 2019-2024 |
Growth Rate | CAGR of % from 2019-2033 |
Segmentation |
|
Table of Contents
- 1. Introduction
- 1.1. Research Scope
- 1.2. Market Segmentation
- 1.3. Research Methodology
- 1.4. Definitions and Assumptions
- 2. Executive Summary
- 2.1. Introduction
- 3. Market Dynamics
- 3.1. Introduction
- 3.2. Market Drivers
- 3.3. Market Restrains
- 3.4. Market Trends
- 3.4.1. OTHER KEY INDUSTRY TRENDS COVERED IN THE REPORT
- 4. Market Factor Analysis
- 4.1. Porters Five Forces
- 4.2. Supply/Value Chain
- 4.3. PESTEL analysis
- 4.4. Market Entropy
- 4.5. Patent/Trademark Analysis
- 5. Global Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 5.1. Market Analysis, Insights and Forecast - by End User Industry
- 5.1.1. Aerospace
- 5.1.2. Automotive
- 5.1.3. Building and Construction
- 5.1.4. Electrical and Electronics
- 5.1.5. Industrial and Machinery
- 5.1.6. Packaging
- 5.1.7. Other End-user Industries
- 5.2. Market Analysis, Insights and Forecast - by Resin Type
- 5.2.1. Fluoropolymer
- 5.2.1.1. By Sub Resin Type
- 5.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 5.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 5.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 5.2.1.1.4. Polyvinylfluoride (PVF)
- 5.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 5.2.1.1.6. Other Sub Resin Types
- 5.2.1.1. By Sub Resin Type
- 5.2.2. Liquid Crystal Polymer (LCP)
- 5.2.3. Polyamide (PA)
- 5.2.3.1. Aramid
- 5.2.3.2. Polyamide (PA) 6
- 5.2.3.3. Polyamide (PA) 66
- 5.2.3.4. Polyphthalamide
- 5.2.4. Polybutylene Terephthalate (PBT)
- 5.2.5. Polycarbonate (PC)
- 5.2.6. Polyether Ether Ketone (PEEK)
- 5.2.7. Polyethylene Terephthalate (PET)
- 5.2.8. Polyimide (PI)
- 5.2.9. Polymethyl Methacrylate (PMMA)
- 5.2.10. Polyoxymethylene (POM)
- 5.2.11. Styrene Copolymers (ABS and SAN)
- 5.2.1. Fluoropolymer
- 5.3. Market Analysis, Insights and Forecast - by Region
- 5.3.1. North America
- 5.3.2. South America
- 5.3.3. Europe
- 5.3.4. Middle East & Africa
- 5.3.5. Asia Pacific
- 5.1. Market Analysis, Insights and Forecast - by End User Industry
- 6. North America Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 6.1. Market Analysis, Insights and Forecast - by End User Industry
- 6.1.1. Aerospace
- 6.1.2. Automotive
- 6.1.3. Building and Construction
- 6.1.4. Electrical and Electronics
- 6.1.5. Industrial and Machinery
- 6.1.6. Packaging
- 6.1.7. Other End-user Industries
- 6.2. Market Analysis, Insights and Forecast - by Resin Type
- 6.2.1. Fluoropolymer
- 6.2.1.1. By Sub Resin Type
- 6.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 6.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 6.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 6.2.1.1.4. Polyvinylfluoride (PVF)
- 6.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 6.2.1.1.6. Other Sub Resin Types
- 6.2.1.1. By Sub Resin Type
- 6.2.2. Liquid Crystal Polymer (LCP)
- 6.2.3. Polyamide (PA)
- 6.2.3.1. Aramid
- 6.2.3.2. Polyamide (PA) 6
- 6.2.3.3. Polyamide (PA) 66
- 6.2.3.4. Polyphthalamide
- 6.2.4. Polybutylene Terephthalate (PBT)
- 6.2.5. Polycarbonate (PC)
- 6.2.6. Polyether Ether Ketone (PEEK)
- 6.2.7. Polyethylene Terephthalate (PET)
- 6.2.8. Polyimide (PI)
- 6.2.9. Polymethyl Methacrylate (PMMA)
- 6.2.10. Polyoxymethylene (POM)
- 6.2.11. Styrene Copolymers (ABS and SAN)
- 6.2.1. Fluoropolymer
- 6.1. Market Analysis, Insights and Forecast - by End User Industry
- 7. South America Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 7.1. Market Analysis, Insights and Forecast - by End User Industry
- 7.1.1. Aerospace
- 7.1.2. Automotive
- 7.1.3. Building and Construction
- 7.1.4. Electrical and Electronics
- 7.1.5. Industrial and Machinery
- 7.1.6. Packaging
- 7.1.7. Other End-user Industries
- 7.2. Market Analysis, Insights and Forecast - by Resin Type
- 7.2.1. Fluoropolymer
- 7.2.1.1. By Sub Resin Type
- 7.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 7.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 7.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 7.2.1.1.4. Polyvinylfluoride (PVF)
- 7.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 7.2.1.1.6. Other Sub Resin Types
- 7.2.1.1. By Sub Resin Type
- 7.2.2. Liquid Crystal Polymer (LCP)
- 7.2.3. Polyamide (PA)
- 7.2.3.1. Aramid
- 7.2.3.2. Polyamide (PA) 6
- 7.2.3.3. Polyamide (PA) 66
- 7.2.3.4. Polyphthalamide
- 7.2.4. Polybutylene Terephthalate (PBT)
- 7.2.5. Polycarbonate (PC)
- 7.2.6. Polyether Ether Ketone (PEEK)
- 7.2.7. Polyethylene Terephthalate (PET)
- 7.2.8. Polyimide (PI)
- 7.2.9. Polymethyl Methacrylate (PMMA)
- 7.2.10. Polyoxymethylene (POM)
- 7.2.11. Styrene Copolymers (ABS and SAN)
- 7.2.1. Fluoropolymer
- 7.1. Market Analysis, Insights and Forecast - by End User Industry
- 8. Europe Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 8.1. Market Analysis, Insights and Forecast - by End User Industry
- 8.1.1. Aerospace
- 8.1.2. Automotive
- 8.1.3. Building and Construction
- 8.1.4. Electrical and Electronics
- 8.1.5. Industrial and Machinery
- 8.1.6. Packaging
- 8.1.7. Other End-user Industries
- 8.2. Market Analysis, Insights and Forecast - by Resin Type
- 8.2.1. Fluoropolymer
- 8.2.1.1. By Sub Resin Type
- 8.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 8.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 8.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 8.2.1.1.4. Polyvinylfluoride (PVF)
- 8.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 8.2.1.1.6. Other Sub Resin Types
- 8.2.1.1. By Sub Resin Type
- 8.2.2. Liquid Crystal Polymer (LCP)
- 8.2.3. Polyamide (PA)
- 8.2.3.1. Aramid
- 8.2.3.2. Polyamide (PA) 6
- 8.2.3.3. Polyamide (PA) 66
- 8.2.3.4. Polyphthalamide
- 8.2.4. Polybutylene Terephthalate (PBT)
- 8.2.5. Polycarbonate (PC)
- 8.2.6. Polyether Ether Ketone (PEEK)
- 8.2.7. Polyethylene Terephthalate (PET)
- 8.2.8. Polyimide (PI)
- 8.2.9. Polymethyl Methacrylate (PMMA)
- 8.2.10. Polyoxymethylene (POM)
- 8.2.11. Styrene Copolymers (ABS and SAN)
- 8.2.1. Fluoropolymer
- 8.1. Market Analysis, Insights and Forecast - by End User Industry
- 9. Middle East & Africa Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 9.1. Market Analysis, Insights and Forecast - by End User Industry
- 9.1.1. Aerospace
- 9.1.2. Automotive
- 9.1.3. Building and Construction
- 9.1.4. Electrical and Electronics
- 9.1.5. Industrial and Machinery
- 9.1.6. Packaging
- 9.1.7. Other End-user Industries
- 9.2. Market Analysis, Insights and Forecast - by Resin Type
- 9.2.1. Fluoropolymer
- 9.2.1.1. By Sub Resin Type
- 9.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 9.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 9.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 9.2.1.1.4. Polyvinylfluoride (PVF)
- 9.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 9.2.1.1.6. Other Sub Resin Types
- 9.2.1.1. By Sub Resin Type
- 9.2.2. Liquid Crystal Polymer (LCP)
- 9.2.3. Polyamide (PA)
- 9.2.3.1. Aramid
- 9.2.3.2. Polyamide (PA) 6
- 9.2.3.3. Polyamide (PA) 66
- 9.2.3.4. Polyphthalamide
- 9.2.4. Polybutylene Terephthalate (PBT)
- 9.2.5. Polycarbonate (PC)
- 9.2.6. Polyether Ether Ketone (PEEK)
- 9.2.7. Polyethylene Terephthalate (PET)
- 9.2.8. Polyimide (PI)
- 9.2.9. Polymethyl Methacrylate (PMMA)
- 9.2.10. Polyoxymethylene (POM)
- 9.2.11. Styrene Copolymers (ABS and SAN)
- 9.2.1. Fluoropolymer
- 9.1. Market Analysis, Insights and Forecast - by End User Industry
- 10. Asia Pacific Engineering Plastic Industry Analysis, Insights and Forecast, 2019-2031
- 10.1. Market Analysis, Insights and Forecast - by End User Industry
- 10.1.1. Aerospace
- 10.1.2. Automotive
- 10.1.3. Building and Construction
- 10.1.4. Electrical and Electronics
- 10.1.5. Industrial and Machinery
- 10.1.6. Packaging
- 10.1.7. Other End-user Industries
- 10.2. Market Analysis, Insights and Forecast - by Resin Type
- 10.2.1. Fluoropolymer
- 10.2.1.1. By Sub Resin Type
- 10.2.1.1.1. Ethylenetetrafluoroethylene (ETFE)
- 10.2.1.1.2. Fluorinated Ethylene-propylene (FEP)
- 10.2.1.1.3. Polytetrafluoroethylene (PTFE)
- 10.2.1.1.4. Polyvinylfluoride (PVF)
- 10.2.1.1.5. Polyvinylidene Fluoride (PVDF)
- 10.2.1.1.6. Other Sub Resin Types
- 10.2.1.1. By Sub Resin Type
- 10.2.2. Liquid Crystal Polymer (LCP)
- 10.2.3. Polyamide (PA)
- 10.2.3.1. Aramid
- 10.2.3.2. Polyamide (PA) 6
- 10.2.3.3. Polyamide (PA) 66
- 10.2.3.4. Polyphthalamide
- 10.2.4. Polybutylene Terephthalate (PBT)
- 10.2.5. Polycarbonate (PC)
- 10.2.6. Polyether Ether Ketone (PEEK)
- 10.2.7. Polyethylene Terephthalate (PET)
- 10.2.8. Polyimide (PI)
- 10.2.9. Polymethyl Methacrylate (PMMA)
- 10.2.10. Polyoxymethylene (POM)
- 10.2.11. Styrene Copolymers (ABS and SAN)
- 10.2.1. Fluoropolymer
- 10.1. Market Analysis, Insights and Forecast - by End User Industry
- 11. Competitive Analysis
- 11.1. Global Market Share Analysis 2024
- 11.2. Company Profiles
- 11.2.1 Alfa S A B de C V
- 11.2.1.1. Overview
- 11.2.1.2. Products
- 11.2.1.3. SWOT Analysis
- 11.2.1.4. Recent Developments
- 11.2.1.5. Financials (Based on Availability)
- 11.2.2 BASF SE
- 11.2.2.1. Overview
- 11.2.2.2. Products
- 11.2.2.3. SWOT Analysis
- 11.2.2.4. Recent Developments
- 11.2.2.5. Financials (Based on Availability)
- 11.2.3 Celanese Corporation
- 11.2.3.1. Overview
- 11.2.3.2. Products
- 11.2.3.3. SWOT Analysis
- 11.2.3.4. Recent Developments
- 11.2.3.5. Financials (Based on Availability)
- 11.2.4 CHIMEI
- 11.2.4.1. Overview
- 11.2.4.2. Products
- 11.2.4.3. SWOT Analysis
- 11.2.4.4. Recent Developments
- 11.2.4.5. Financials (Based on Availability)
- 11.2.5 Covestro AG
- 11.2.5.1. Overview
- 11.2.5.2. Products
- 11.2.5.3. SWOT Analysis
- 11.2.5.4. Recent Developments
- 11.2.5.5. Financials (Based on Availability)
- 11.2.6 Dongyue Group
- 11.2.6.1. Overview
- 11.2.6.2. Products
- 11.2.6.3. SWOT Analysis
- 11.2.6.4. Recent Developments
- 11.2.6.5. Financials (Based on Availability)
- 11.2.7 DuPont
- 11.2.7.1. Overview
- 11.2.7.2. Products
- 11.2.7.3. SWOT Analysis
- 11.2.7.4. Recent Developments
- 11.2.7.5. Financials (Based on Availability)
- 11.2.8 Far Eastern New Century Corporation
- 11.2.8.1. Overview
- 11.2.8.2. Products
- 11.2.8.3. SWOT Analysis
- 11.2.8.4. Recent Developments
- 11.2.8.5. Financials (Based on Availability)
- 11.2.9 Indorama Ventures Public Company Limited
- 11.2.9.1. Overview
- 11.2.9.2. Products
- 11.2.9.3. SWOT Analysis
- 11.2.9.4. Recent Developments
- 11.2.9.5. Financials (Based on Availability)
- 11.2.10 LG Chem
- 11.2.10.1. Overview
- 11.2.10.2. Products
- 11.2.10.3. SWOT Analysis
- 11.2.10.4. Recent Developments
- 11.2.10.5. Financials (Based on Availability)
- 11.2.11 Mitsubishi Chemical Corporation
- 11.2.11.1. Overview
- 11.2.11.2. Products
- 11.2.11.3. SWOT Analysis
- 11.2.11.4. Recent Developments
- 11.2.11.5. Financials (Based on Availability)
- 11.2.12 SABIC
- 11.2.12.1. Overview
- 11.2.12.2. Products
- 11.2.12.3. SWOT Analysis
- 11.2.12.4. Recent Developments
- 11.2.12.5. Financials (Based on Availability)
- 11.2.13 Solvay
- 11.2.13.1. Overview
- 11.2.13.2. Products
- 11.2.13.3. SWOT Analysis
- 11.2.13.4. Recent Developments
- 11.2.13.5. Financials (Based on Availability)
- 11.2.14 Toray Industries Inc
- 11.2.14.1. Overview
- 11.2.14.2. Products
- 11.2.14.3. SWOT Analysis
- 11.2.14.4. Recent Developments
- 11.2.14.5. Financials (Based on Availability)
- 11.2.15 Victre
- 11.2.15.1. Overview
- 11.2.15.2. Products
- 11.2.15.3. SWOT Analysis
- 11.2.15.4. Recent Developments
- 11.2.15.5. Financials (Based on Availability)
- 11.2.1 Alfa S A B de C V
List of Figures
- Figure 1: Global Engineering Plastic Industry Revenue Breakdown (Million, %) by Region 2024 & 2032
- Figure 2: North America Engineering Plastic Industry Revenue (Million), by End User Industry 2024 & 2032
- Figure 3: North America Engineering Plastic Industry Revenue Share (%), by End User Industry 2024 & 2032
- Figure 4: North America Engineering Plastic Industry Revenue (Million), by Resin Type 2024 & 2032
- Figure 5: North America Engineering Plastic Industry Revenue Share (%), by Resin Type 2024 & 2032
- Figure 6: North America Engineering Plastic Industry Revenue (Million), by Country 2024 & 2032
- Figure 7: North America Engineering Plastic Industry Revenue Share (%), by Country 2024 & 2032
- Figure 8: South America Engineering Plastic Industry Revenue (Million), by End User Industry 2024 & 2032
- Figure 9: South America Engineering Plastic Industry Revenue Share (%), by End User Industry 2024 & 2032
- Figure 10: South America Engineering Plastic Industry Revenue (Million), by Resin Type 2024 & 2032
- Figure 11: South America Engineering Plastic Industry Revenue Share (%), by Resin Type 2024 & 2032
- Figure 12: South America Engineering Plastic Industry Revenue (Million), by Country 2024 & 2032
- Figure 13: South America Engineering Plastic Industry Revenue Share (%), by Country 2024 & 2032
- Figure 14: Europe Engineering Plastic Industry Revenue (Million), by End User Industry 2024 & 2032
- Figure 15: Europe Engineering Plastic Industry Revenue Share (%), by End User Industry 2024 & 2032
- Figure 16: Europe Engineering Plastic Industry Revenue (Million), by Resin Type 2024 & 2032
- Figure 17: Europe Engineering Plastic Industry Revenue Share (%), by Resin Type 2024 & 2032
- Figure 18: Europe Engineering Plastic Industry Revenue (Million), by Country 2024 & 2032
- Figure 19: Europe Engineering Plastic Industry Revenue Share (%), by Country 2024 & 2032
- Figure 20: Middle East & Africa Engineering Plastic Industry Revenue (Million), by End User Industry 2024 & 2032
- Figure 21: Middle East & Africa Engineering Plastic Industry Revenue Share (%), by End User Industry 2024 & 2032
- Figure 22: Middle East & Africa Engineering Plastic Industry Revenue (Million), by Resin Type 2024 & 2032
- Figure 23: Middle East & Africa Engineering Plastic Industry Revenue Share (%), by Resin Type 2024 & 2032
- Figure 24: Middle East & Africa Engineering Plastic Industry Revenue (Million), by Country 2024 & 2032
- Figure 25: Middle East & Africa Engineering Plastic Industry Revenue Share (%), by Country 2024 & 2032
- Figure 26: Asia Pacific Engineering Plastic Industry Revenue (Million), by End User Industry 2024 & 2032
- Figure 27: Asia Pacific Engineering Plastic Industry Revenue Share (%), by End User Industry 2024 & 2032
- Figure 28: Asia Pacific Engineering Plastic Industry Revenue (Million), by Resin Type 2024 & 2032
- Figure 29: Asia Pacific Engineering Plastic Industry Revenue Share (%), by Resin Type 2024 & 2032
- Figure 30: Asia Pacific Engineering Plastic Industry Revenue (Million), by Country 2024 & 2032
- Figure 31: Asia Pacific Engineering Plastic Industry Revenue Share (%), by Country 2024 & 2032
List of Tables
- Table 1: Global Engineering Plastic Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 2: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 3: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 4: Global Engineering Plastic Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 5: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 6: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 7: Global Engineering Plastic Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 8: United States Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 9: Canada Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 10: Mexico Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 11: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 12: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 13: Global Engineering Plastic Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 14: Brazil Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 15: Argentina Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 16: Rest of South America Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 17: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 18: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 19: Global Engineering Plastic Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 20: United Kingdom Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 21: Germany Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 22: France Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 23: Italy Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 24: Spain Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 25: Russia Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 26: Benelux Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 27: Nordics Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 28: Rest of Europe Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 29: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 30: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 31: Global Engineering Plastic Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 32: Turkey Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 33: Israel Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 34: GCC Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 35: North Africa Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 36: South Africa Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 37: Rest of Middle East & Africa Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 38: Global Engineering Plastic Industry Revenue Million Forecast, by End User Industry 2019 & 2032
- Table 39: Global Engineering Plastic Industry Revenue Million Forecast, by Resin Type 2019 & 2032
- Table 40: Global Engineering Plastic Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 41: China Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 42: India Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 43: Japan Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 44: South Korea Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 45: ASEAN Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 46: Oceania Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 47: Rest of Asia Pacific Engineering Plastic Industry Revenue (Million) Forecast, by Application 2019 & 2032
Frequently Asked Questions
1. What is the projected Compound Annual Growth Rate (CAGR) of the Engineering Plastic Industry?
The projected CAGR is approximately N/A%.
2. Which companies are prominent players in the Engineering Plastic Industry?
Key companies in the market include Alfa S A B de C V, BASF SE, Celanese Corporation, CHIMEI, Covestro AG, Dongyue Group, DuPont, Far Eastern New Century Corporation, Indorama Ventures Public Company Limited, LG Chem, Mitsubishi Chemical Corporation, SABIC, Solvay, Toray Industries Inc, Victre.
3. What are the main segments of the Engineering Plastic Industry?
The market segments include End User Industry, Resin Type.
4. Can you provide details about the market size?
The market size is estimated to be USD XX Million as of 2022.
5. What are some drivers contributing to market growth?
N/A
6. What are the notable trends driving market growth?
OTHER KEY INDUSTRY TRENDS COVERED IN THE REPORT.
7. Are there any restraints impacting market growth?
N/A
8. Can you provide examples of recent developments in the market?
March 2023: Victrex PLC introduced a new type of implantable PEEK-OPTIMA polymer that is specifically designed for use in the manufacturing processes of medical device additives, such as fused deposition modeling (FDM) and fused filament fabrication (FFF).February 2023: Victrex PLC revealed its plans to invest in the expansion of its medical division, Invibio Biomaterial Solutions, which includes establishing a new product development facility in Leeds, United Kingdom.February 2023: Covestro AG introduced Makrolon 3638 polycarbonate for healthcare and life sciences applications such as drug delivery devices, wellness and wearable devices, and single-use containers for biopharmaceutical manufacturing.
9. What pricing options are available for accessing the report?
Pricing options include single-user, multi-user, and enterprise licenses priced at USD 3800, USD 4500, and USD 5800 respectively.
10. Is the market size provided in terms of value or volume?
The market size is provided in terms of value, measured in Million.
11. Are there any specific market keywords associated with the report?
Yes, the market keyword associated with the report is "Engineering Plastic Industry," which aids in identifying and referencing the specific market segment covered.
12. How do I determine which pricing option suits my needs best?
The pricing options vary based on user requirements and access needs. Individual users may opt for single-user licenses, while businesses requiring broader access may choose multi-user or enterprise licenses for cost-effective access to the report.
13. Are there any additional resources or data provided in the Engineering Plastic Industry report?
While the report offers comprehensive insights, it's advisable to review the specific contents or supplementary materials provided to ascertain if additional resources or data are available.
14. How can I stay updated on further developments or reports in the Engineering Plastic Industry?
To stay informed about further developments, trends, and reports in the Engineering Plastic Industry, consider subscribing to industry newsletters, following relevant companies and organizations, or regularly checking reputable industry news sources and publications.
Methodology
Step 1 - Identification of Relevant Samples Size from Population Database



Step 2 - Approaches for Defining Global Market Size (Value, Volume* & Price*)

Note*: In applicable scenarios
Step 3 - Data Sources
Primary Research
- Web Analytics
- Survey Reports
- Research Institute
- Latest Research Reports
- Opinion Leaders
Secondary Research
- Annual Reports
- White Paper
- Latest Press Release
- Industry Association
- Paid Database
- Investor Presentations

Step 4 - Data Triangulation
Involves using different sources of information in order to increase the validity of a study
These sources are likely to be stakeholders in a program - participants, other researchers, program staff, other community members, and so on.
Then we put all data in single framework & apply various statistical tools to find out the dynamic on the market.
During the analysis stage, feedback from the stakeholder groups would be compared to determine areas of agreement as well as areas of divergence